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The flow of liquid helium 11 a t  subcritical velocities can be described by hydro- 
dynamic equations which assume the possibility of independent motions of the 
two fluid components, but difficulties arise in supercritical flows with forces of 
mutual friction between the component fluids. The extensive evidence that 
mutual friction is caused by scattering of the thermal excitations in the velocity 
fields of the quantized vortex lines suggests that the equations should include 
mutual forces which are large near the vortex-lines and negligible elsewhere. In  
their original theory, Hall & Vinen (1956) did assume this, and here theimplications 
of the assumption are examined in detail. Serious difficulties are found in recon- 
ciling localization of the mutual friction with fully developed flow in channels, 
and it is suggested that, although the mutual friction arises from scattering near 
the vortex lines, the force on the superfluid is distributed uniformly over distances 
comparable with the distance between adjacent vortex lines. 

1. Introduction 
The remarkable flow properties of liquid helium 11 can be described consistently 

using the two-fluid model of Tisza and London which assumes that a component 
with Newtonian viscosity-the normal fluid-co-exists with and interpenetrates 
freely an inviscid component-the superfluid. The detailed interpretation of the 
model is that the thermal excitations of the liquid are sufficiently localized in 
space to be regarded as ‘molecules ’ which carry with them energy and momentum 
in much the same way as do gas molecules and which can acquire drift velocities 
independent of the velocity of the liquid in which they are propagated. In  the 
two-fluid model, the energy and drift momentum of the excitations are the energy 
and momentum of the normal fluid and the residual properties of the liquid are 
the properties of the superfluid, essentially those of liquid helium at absolute zero 
of temperature. So long as the relative velocities of the two components are small 
compared with the propagation velocities of the excitations independent motion 
is possible, but experiment shows that this is true only if the flow velocity is less 
than a much smaller critical velocity characteristic of the flow system. At higher, 
supercritical, velocities, momentum interchange between the components takes 
place, equivalent to forces of mutual friction, which is explained by Hall 8: Vinen 
(1956) as a consequence of the scattering of thermal excitations in the strong 
velocity fields surrounding the vortex lines that appear in the superfluid. The 
existence of discrete vortex lines with circulation h/m has some theoretical support 
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(Feynman 1955) and the Hall-Vinen theory of mutual friction has the merit of 
not requiring additional phenomenonological assumptions. Although the theory 
has been successful in describing mutual friction in a number of flows, it does not 
follow that the detailed assumptions about the flow near the vortex lines are 
either necessary or self-consistent. Indeed, most of the experimental measure- 
ments that can be compared with the theory are of flows with line separations 
small compared with the channel width, and then the existence of the dissipative 
mechanism of scattering is sufficient to account for the observed mutual friction. 
If the line separation is comparable with the channel width, the details of the 
flow become important for the bulk behaviour and cannot be accepted without 
some discussion of their meaning and consistency with experiment and with the 
nature of liquid helium. My purpose here is to discuss the hydrodynamic impli- 
cations of the theory and to show that the original form is not compatible with 
steady, fully developed flow. 

2. The two-fluid equations of motion with mutual friction 
The use of hydrodynamic equations of motion to describe flow of liquid helium11 

approximates the behaviour of an assembly of atoms by that of a continuous fluid 
and the quantum properties by having two fluid components and quantization of 
circulation in the superfluid. London (1954) and others have written down 
equations of this kind, but it may be useful to repeat here the reasoning that leads 
to the usual forms. Both compressibility and thermal expansion of the whole 
fluid may be neglected if the flow velocities are small compared with the velocity 
of ordinary sound and if the temperature differences are small compared with the 
absolute temperature. With a unit of mass such that the total fluid density is one, 
ps andp, are the mass fractions of the superfluid and normal fluid components and 

ps+pn = 1 (p, = function of T), 

where T is the absolute temperature. Conservation of mass is expressed by the 
equation, 

div (p,u,) + div (p,u,) = 0, 

where us is the superfluid velocity and u, is the normal fluid velocity. The local 
rate of conversion of normal to superfluid is 

(2.2) 

(2.1) 

+,/at + div (p, us) = - +,/at - div (p, u,). 

Conservation of momentum for each fluid is expressed by the equations: 

~(P,u,)iat + div lxP,~s) us1 = [ W a t  + div fP,U,)l us-psgrad p + Fs,, (2.3) 

a(p,u,)/at+div[(p,u,)u,] = [ap,/at+div(p,u,)]u,-p,gradP+F,,+v,V2u,, 
(2.4) 

where P is the pressure, v, is the viscosity of the normal fluid, and F,,, F8, are 
mutual forces acting respectively on the normal and the superfluid. To obtain the 
terms, [+,/at + div (p ,~, ) ]  u, and [+,/at + div (p, u,)] us, which take account of 
momentum changes by conversion of one fluid to the other, it has been assumed 
that the conversion takes place a t  fluid velocity u, (London 1954). This assump- 
tion simplifies the following argument but is not essential to it. 
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It is usual to assume that the mutual forces are short-range forces so that, to 
the approximation implied by the continuum representation, their sum, F,, + F,,, 
is everywhere zero. For subcritical flow without mutual friction, their magnitude 
is determined by two assumptions, based on experiment: (i) that, in isothermal 
conditions, irrotational and inviscid flow of the superfluid can occur independently 
of the normal fluid; and (ii) that the entropy resides in and is convected by the _. 

normal fluid so that ax 
Ic, - + div (Su,) = - + - ( rad T ) 2 ,  

at T TZg 

where S is the local entropy, 8 is the local rate of production of heat by dissipative 
processes, and k, is the thermal conductivity of the normal fluid. Then considera- 
tion of the conservation of energy and momentum shows that 

in flows without mutual friction. 
For supercritical flows, terms must be added to these equations to represent 

the effects of mutual friction. Gorter & Mellink (1949) supposed that the force of 
mutual friction depends only on the local difference of the velocities of the two 
components and dimensional reasoning shows the force to be proportional to the 
cube of the relative velocity (Vinen 1957). The difficulty of accepting a force of 
this kind is that quantum mechanics requires that the superfluid vorticity should 
be zero everywhere except possibly on discrete vortex lines. The condition that 
this condition should persist is easily obtained from equation (2.3) and is that 

curl (Fsn/p,) = 0. (2.7) 

The mutual force of equation (2.6) satisfies this condition but the Gorter-Mellink 
force of mutual friction does not. Hall & Vinen avoid this particular difficulty by 
concentrating the forces of mutual friction in the close neighbourhood of the 
vortex lines, so that non-zero values of curl u, occur only in regions so small that 
the fluid there can no longer be regarded as continuous. The implications and 
consequences of the vortex-line model of mutual friction are discussed in the 
next two sections. 

3. Structure of vortex lines in motion 
In  an equilibrium state, such as uniform rotation, the quantized vortex lines 

move with the superfluid and are simple lines of concentrated, axisymmetrically 
distributed vorticity. Vorticity and departures from fluid-like behaviour are 
confined to a core which is believed to have a diameter comparable with the 
interatomic spacing. The thermal excitations which constitute the normal fluid 
are propagated in the superfluid and so they are deflected and scattered as they 
pass through the intense velocity field surrounding each vortex line. If their drift 
velocity is not the same as the average velocity of the superfluid around the line, 
a net transfer of momentum takes place between the component fluids at  a rate 
proportional to their velocity difference with a constant of proportionality varying 
as the vortex-line density. Very briefly, this is the basis of the Hall-Vinen theory 
of mutual friction which has considerable experimental support (for a full 
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account, see Hall 1960). When the scattering calculations are made, it is found 
that scattering is appreciable within distances from the core of the order of fifty 
atomic spacings and so momentum is being lost by the normal fluid inside a 
cylinder of considerable radius. If this momentum were transferred to the super- 
fluid locally, vorticity would be generated within the scattering volume and the 
flow there would no longer be irrotational. Confinement of vorticity within the 
core of the vortex line requires that the forces on the superfluid arising from the 
scattering process must be transferred either to the core or to the superfluid in 
general. 

/-- \ 

(4) 

\- +/-I 

/ \ 

1 
+I 
\ 
I .  I-  
A \ /  /-- 

FIGURE 1. Distributions of velocity and vorticity for three kinds of ' discrete' vortex line. 
( a )  Vorticity concentrated in a core which moves through the surrounding superfluid 
(including fluid in the scattering region). ( b )  Core of concentrated vorticity with associated 
scattering region moving together through the surrounding superfluid. ( c )  Simple core of 
axisymmetrically distributed vorticity. The full lines are streamlines of velocity relative 
to the core, the broken circles represent the ' boundary' of the scattering region, and the 
+ and - signs indicate the distribution of vorticity. The velocity of translation of the lines is 
vertically upwards. 

Hall & Vinen chose the first and more natural of these alternatives which 
means that vortex-doublets are generated continuously a t  the core and are 
annihilated continuously by movement of the vortex line through the fluid with 
velocity V in a direction at right-angles to the line and to the total force given by 
the well-known lift equation 

where F is the force per unit length applied to the line, K is the vector circulation 
about the line. In  other words, the frictional force is absorbed by adding to the 
impulse of the system of vortex lines. If vorticity is confined within the line- 
cores, the average velocity of superfluid in the scattering region is determined by 

(3.1) = p,v K, 
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the instantaneous distribution of vorticity in the superfluid and at the flow 
boundaries and, since the transit velocities of the excitations are much larger 
than the drift velocities, the scattering depends only on the instantaneous velocity 
field and is independent of the translation velocity of the line through the fluid 
'given by equation (3.1). The scattering is nearly symmetrical and so the total 
force must be at right-angles to the line direction and in the plane of the line and 
the relative velocity between the normal fluid and the superfluid surrounding the 
scattering region. In  their original work, Hall & Vinen chose to assume that the 
fluid of the scattering region moved with the core through the surrounding fluid 
and were led to predict a force component at right-angles to the relative velocity. 
Motion of this kind requires the maintenance of an unquantized distribution of 
vorticity around the periphery of the scattering region and, since the second 
force component has not been observed, the assumption seems unnecessary. For 
the core of a vortex line to move through the superfluid, it is only necessary that 
the distribution of vorticity within the core should depart slightly from the 
axisymmetric distribution of an equilibrium system. If the distribution is exactly 
axisymmetric, the vortex line moves with the fluid. These alternatives are 
illustrated in figure 1. 

4. Fully developed flow in a uniform channel 
If liquid flows through a long channel of uniform section, the motion becomes 

statistically steady and homogeneous in the direction of flow after a sufficient 
inlet length, and measurements of the dependence of flow-rate on channel length 
show that this is true for flows of liquid helium 11 driven either by pressure 
gradients or by temperaturegradients. Inthesteady state, the totalof momentum 
and impulse of the superfluid is constant and the mean driving force equals the 
sum of the mean retarding forces, which is the mutual friction if no momentum 
is transferred to the channel walls. If we accept that the frictional forces act 
locally on the vortex lines which constitute a very small part of the whole fluid, 
we should ask how they can balance the sum of the driving force, 

- grad P + S grad T ,  

whose mean value is uniformly distributed over the channel. The difficulty of 
maintaining such a balance in the steady fully developed flow can be made clear 
by considering the vorticity of the superfluid. Since the driving-force is the 
gradient of the scalar, 

-P+ SdT, 
s o  

its curl is zero and it generates vorticity only at the channel walls. Since the 
strength of the vortex layer at the walls determines the mean velocity of flow, 
which is time-independent, the continuous generation of vorticity there must be 
balanced by absorption of vortex lines of the opposite sign or by emission of 
vortex lines of the same sign. In  an ordinary Newtonian fluid, viscosity diffuses 
vorticity from the wall but, in superfluid flow, a quantized line close to a wall is 
moved rapidly by its image in the wall, loses energy and momentum by the 
forces of mutual friction so generated and very quickly collides with the wall. 
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For this reason, line emission from the wall is a very improbable process and the 
generation of wall vorticity can be balanced only by absorption of vortex lines, 
generated in the flow by stretching of existing lines and then convected or moved 
to the wall. An immediate difficulty is that motion of lines systematically toward 
the walls is unlikely unless there is a gradient of vortex-line density across the 
channel, and thermal flow without net mass-flow is apparently independent of 
channel width and presumably completely homogeneous. 

A more serious difficulty to the concept of forces acting directly on the vortex 
lines is found by using the expression for the impulse of a fluid containing vortex 
lines (Lamb 1932, p. 215) 

If the fluid contains discrete vortex lines with circulation K ,  the impulse is 

P = BS(cur1u x x) dV. (4.1) 

P = KA,  (4.2) 

where A is the vector area of a surface bounded by the vortex lines. For con- 
servation of momentum, the mean total of the driving force equals the mean 
total of mutual friction which is the rate of increase of impulse, i.e. 

where A, is the sectional area and A,  is the area of the surface projected on a plane 
transverse to the flow direction. Consideration of signs shows that vortex-loops of 
positive area (anti-clockwise circulation when viewed along the direction of super- 
fluid flow) tend to increase in area while loops of negative area tend to decrease, 
in each case because the velocity of translation of the line in response to the 
mutual friction is, on the average, in that sense. The distribution of mutual 
friction along the vortex lines can be considered in two parts, the forces due to the 
difference of mean velocities of the two fluids and the forces due to fluctuations of 
the difference. Since the translational velocity of the lines is related to the mutual 
friction by equation (3.1), the mean-velocity forces displace each element of the 
projected lines ‘outward’ at a constant rate, and a short consideration of vortex 
loops in space will show that the displacements tend to turn over loops of negative 
projected area so that the projected area becomes positive. Consequently, the 
total effect is to orientate all the vortex lines and move them to the walls where 
they may cancel the vorticity generated by the driving forces, but the mean- 
velocity forces alone cannot generate more lines and the process ends when all the 
original lines have collided with the walls. 

A steady increase of projected area without a continuous loss of line density 
requires stretching of vortex lines by turbulent movements at a rate at least 
equal to the loss by collision with the walls, by distorting vortex loops of simple 
form into coils occupying no more of the channel section but having a larger 
projected area (figure 2). To coil a vortex loop, the movement of the line in space 
must be a t  some stage in the opposite direction to the translation velocity induced 
by the mean velocity force on the line, and the necessary reversal might be due 
either to a translation velocity in response to a fluctuation in the relative velocity, 
us-u,, or to convection velocity of the superfluid. In  either case, it  can be 
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shown that differences of superfluid velocity over distances comparable with the 
mean separation of vortex lines must commonly exceed the mean velocity for 
coiling to be a probable process. Measurements by Vinen (1957) of mutual 
friction in heat flow can be analysed to show that the root-mean-square fluctua- 
tions of superfluid velocity are probably less than 0-3 of the mean velocity (see 
appendix), and so the large fluctuations necessary for coiling must bevery rare. The 

t /--* StreaIll 
direction 

Looking 
cross-stream 
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FIGURE 2. Motion of vortex loops. ( a )  Motion of loops with positive and negative projected 
area in response to ' mean-velocity ' frictional forces. ( b )  Stages in the coiling of a vortex 
loop: (i) initial Ioop, (ii) twisting of the loop, (iii) folding of the twisted loop, (iv) coiled loop 
of increased projected area. The full lines represent the vortex cores and the broken arrows 
their directions of motion. The superfluid velocity is vertical in the cross-stream 
projection. 

difficulty is even greater in isothermal flow in small pressure gradients. There the 
vortex lines are so few that fluctuations are certainly muchless than the mean and, 
if the vortex lines move in accordance with equation (3.1), they are rapidly 
removed from the flow. 

The conclusion that extension of vortex lines by stretching is unlikely to 
balance the loss by annihilation at the walls appears at variance with the intense 
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generation of vorticity that occurs in ordinary turbulent flows, but it is a conse- 
quence of the systematic motion of the vortex lines in response to the mean 
velocity force. In  an ordinary liquid in turbulent flow, movement and stretching 
of the vortex lines is controlled by the locally isotropic, small-scale components 
of the motion and is virtually independent of the mean flow and ordered parts of 
the motion controlled by the mean flow. If the mutual friction acts directly on 
the vortex lines of the superfluid, expansion of vortex loops in response to the 
mean flow is so rapid that the random stretching by turbulent movements can 
balance loss by annihilation only if velocity fluctuations commonly exceed the 
mean velocities. This is unknown in ordinary liquids and not to be expected in a 
superfluid. 

5. Discussion 
Since the peculiar properties of liquid helium 11 are quantum effects, it  may 

be that its flow cannot be describedexcept by the methods of quantum mechanics? 
but it is more likely that the large-scale motion, i.e. aspects of the motion that 
can be represented with adequate accuracy by averages over regions of space and 
time large compared with lengths and times on the atomic scale, can be described 
by the methods of classical hydrodynamics if terms are added to the equations of 
motion to represent quantum effects. The quantum effects appear as the two- 
fluid model (of which the thermo-mechanical force is a consequence), the absence 
of vorticity in the superfluid, the existence of quantized vortex lines and the 
mutual friction. In  the absence of an adequate theory of flow based on quantum 
mechanics, the form of the classical representation can be found only by con- 
siderations of self-consistency and conformity with experimental results. The 
inclusion of quantized vortex lines and mutual friction is a source of doubt and 
difficulty, although the work of Hall & Vinen has established that the mutual 
friction arises from scattering of excitations in the velocity fields surrounding the 
lines. If vorticity remains concentrated in the vortex lines, the force of mutual 
friction acting on the superfluid, f,,, cannot generate vorticity and it must be 
distributed in such a way that curl fJp, is zero except possibly inside the cores 
of the lines. The argument of the previous section seems to show that the most 
natural assumption? that the mutual friction acts only on the line cores, cannot be 
reconciled with the existence of fully developed channel flow and so we must 
consider the possibility that the force f,, is distributed over the whole superfluid. 

If the force on the superfluid, f,,, acts almost entirely on the irrotational fluid, 
it does not add to the impulse of the vortex-line system and, like the driving 
force, is of the form, p,grad$, and $ is a scalar. The long-range forces which 
diffuse momentum transfer derived from scattering of excitations must extend 
at least as far as the distance between neighbouring lines (or the distance 
to the wall if that is the less) if the effective distribution is of this form. One 
reason for expecting long-range forces in the superfluid is that the conservation of 
irrotational flow has been presented as a basic property of the superfluid and that 
its classical expression should make provision for the destruction of unquantized 
vorticity and not merely use the absence of viscosity to show that distributed 
vorticity does not arise in an initially irrotational flow (as for flows obeying 
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equations (2.3), (2.6)).t A less abstract reason for believing that vortex lines 
move with the superfluid and so that the friction force is distributed by long- 
range forces is that line movement relative to the superfluid prevents the occur- 
rence of the vortex-line equivalent of laminar flow, the steady convection along 
a channel of a regular array of lines. The necessity for an alternative to turbulent 
flow is shown by some measurements by Atkins of isothermal flow in wide tubes 
which show clearly a transition from ‘laminar’ flow to turbulent flow a t  a 
Reynolds number comparable with the critical number for Newtonian fluids 
(Townsend 1961). Further, the flow characteristics on either side of the transition 
are described quantitatively by analyses based on these descriptions. Other 
advantages of allowing the existence of laminar flow are found in the description 
of frictional flows at velocities only slightly above the critical velocity. As has 
been pointed out before, there is no possibility, let alone likelihood, that random 
coiling can generate sufficient length of vortex line to balance the loss to the 
channel walls, but a more positive reason for preferring distributed mutual 
friction is that it offers a possible explanation of the critical velocity. Consider 
isothermal flow with a single vortex loop moving along the channel at a velocity 
set by the general velocity of the superfluid and by its own shape and the wall 
effects. With a pressure difference between the ends of the channel, a configuration 
can be found such that the loop moves steadily along the channel and momentum 
is conserved. The configuration is unstable to small displacements if the general 
flow velocity is small, but possibly some configurations become stable above a 
critical velocity. Above this velocity, vortex loops entering the tube could pass 
through it without risk of destruction. If a continuous supply of loops is available, 
perhaps generated at slight surface irregularities, mutual friction would appear 
at the velocity for which convection of isolated vortex loops first becomes a 
stable process. 

The way in which distributed mutual friction should be introduced into the 
equations of motion for the superfluid is not immediately evident, and in some 
kinds of flow (e.g. an isolated vortex ring) distribution of the forces may be im- 
possible. My contention is that steady channel flow cannot be described by 
equations of motion with mutual friction Concentrated on the vortex lines. In  
most of the applications of the vortex-line theory of mutual friction, the mean 
spacing of the lines is small compared with the flow width and then the necessary 
requirements of over-all conservation of momentum and energy are sufficient to 
obtain the answers and the details of the motion are not of direct importance. 

Prof. H. E. Hall and Prof. W. F. Vinen have helped me considerably by 
criticism of earlier forms of my argument and I am grateful to them. 

Appendix: The stretching of vortex lines by turbulent movements 
If the forces of mutual friction are concentrated at the vortex lines, the motion 

of the lines consists of an organized ‘outward’ translation in response to the 
frictional forces induced by the mean relative velocity, random translation 

t The viscous term in the equations of motion can be written vcurl (curlu), and so long- 
range forces which destroy vorticity also destroy the influence of viscosity. 
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through the superfluid induced by fluctuations of relative velocity, and random 
convection by the surrounding superfluid. As pointed out above, the organized 
translation tends to produce ever-expanding loops of positive area and so to 
reduce continuously the line density, a decrease that might be counteracted by 
deformation of existing lines into small loops by movements resembling those of 
ordinary turbulence. Even if the analogy with ordinary turbulence did not 
indicate that loop production is most efficient for diameters comparable with the 
average spacing between lines, it would be clear that the organized expansion 
would remove all loops of size less than the optimum for production and so we 
need consider only whether the relative motion of adjacent lines is sufficient to 
coil them into loops. 

The force per unit length on a quantized line of the superfluid isBp,p, K(u, - u,), 
where B is a constant characteristic of the scattering process. If the force is 
concentrated at the line core, the line is translated through the fluid with velocity 
V set by equation (3 .1 ) .  Assuming the relative velocity to be a t  right-angles to 
the line, we find 

In thermal flow with no mean mass transfer, 

v = Bp,(u,-u,). (A. 1) 

PsU,+Pnun = 0,  

where Us, U, are the mean velocities of the two fluids, and so 

7 = Bu,. (A. 2) 

The fluctuations in V due to changes in relative velocity depend on the correlation 
between fluctuations of velocity in the two components. An extreme assumption 
would be that the fluctuations in mass transfer are zero and then the root-mean- 
square of the fluctuations of V would be 

where u, is the fluctuation in superfluid velocity. Viscous forces on the normal 
fluid would prevent fluctuations as large as this. For coiling to occur, it is 
necessary that the combined motion of random translation and convection 
should be capable of twisting a vortex loop in opposition to the systematic 
expansion with velocity v. The necessary condition is clearly that the combined 
random motion should produce relative velocities between adjacent lines that 
are frequently more than 7. 

The difference of convection velocities at adjacent lines depends on the mean 
spacing and directional correlation of the vortex lines. An approximate estimate 
of the dependence can be obtained by elementary reasoning. If the total length 
of vortex line per unit volume is L, the mean spacing is 3 4 3  L-4 for hexagonal 
packing (L-* for square packing) and, if neighbouring lines are randomly directed 
(the most favourable configuration), the root-mean-square velocity of a line due 
to its neighbours is (3/242n)KL*. The relative velocity is substantially un- 
affected by more remote lines and it is likely that the R.M.S. relative velocity of 
convection is no more than ( 3 / 2  4277) KL&. Measurements by Vinen (1957) show 
that the mutual friction per unit volume in thermal flow is nearly A’p,p,( V, - Un)3, 
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where A' is a constant dependent on temperature. Equating this expression for 
the mutual friction to the total force on a length L of vortex-line, i.e. 

~P,P,KL(U,-- Vn) = A'P,P,(U,- 

the ratio of the R.M.S. relative velocity to is 

3 K L ~  3 
242n v 242n[A;7*& 

Near 1-4"K, typical values are A' = 5*6~m-~sec ,  B = 0.8, K = 10-3~m~sec-~,  
pn = 0.1, and the ratio is 0.35. Since most of the approximations over-estimate 
the fluctuations, it is extremely improbable that coiling can occur in the presence 
of the organized movement of vortex lines. 
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